Multi-Sub Optimizer Tutorial

Introduction

This tutorial will show you how to use Multi-Sub Optimizer (MSO) and briefly introduce you to the theory behind it. Using data from a set of measurements that have already been performed, you'll learn how to set up an MSO project and run the optimization without having to do any measurements beforehand yourself. This will get you familiar with MSO first, so you'll be ready to optimize your system as soon as you perform the necessary measurements on your own setup.

What is Multi-Sub Optimizer?

Multi-Sub Optimizer is free software that performs multiple subwoofer integration. Given a set of individual subwoofer and optional main speaker measurements, it performs the following tasks automatically.

It does this by calculating gain, delay, and equalization (EQ) individually for each subwoofer. This technique is more powerful than the traditional EQ approach described below.

What is the Traditional EQ Approach?

When you place subwoofers and main speakers in a room and the measure their frequency response, room modes in the modal region (typically 200 Hz and below, depending on room dimensions) cause large peaks and dips in the measured frequency response. A typical way to tackle this problem is to use a digital signal processing (DSP) device that provides parametric EQ for the subwoofers. The conventional approach is to apply the same EQ to all subwoofers in order to flatten the measured response at the main listening position (MLP). In a home theater application, you'd typically adjust the subwoofer distance and level settings in the AVR or preamp/processor for best integration of the subs and main speakers. After each such sub distance or level adjustment, you'd make a new measurement to determine if the result is good enough. In a more sophisticated approach using a DSP device, you might set individual delays for each subwoofer. These delays are often calculated once based on the relative distances of each sub from the main listening position, and left at their calculated value. This step alone can make a significant improvement but it does not guarantee optimum results.

What are the Problems with the Traditional EQ Approach?

At the specific frequencies of the room modes, the frequency response may have peaks at some listening positions and dips at others. Unless you're very lucky, flattening the response at the main listening position will make it worse at others. Also, when integrating the main speakers and subs, each new adjustment of subwoofer distance or level requires a new measurement to determine if the integration of main speakers and subs is good enough. That can become very time consuming.

How is MSO Better than Traditional EQ?

As mentioned earlier, MSO is capable of optimizing the system response in the modal frequency region at multiple listening positions simultaneously. This is different from, say, taking an average of the responses at multiple listening positions and equalizing that. Because of the increase in the number of degrees of freedom that come with individual subwoofer EQ, it's possible to reduce the seat-to-seat variation of the system response. In addition, each time a gain, delay or filter parameter value is changed, the overall combined responses of all subs (and main speakers if desired) are predicted in software. Therefore, millions of possible combinations of parameter values can be evaluated without taking any additional measurements.

Who Came Up With These Ideas?

The earliest known effective attempt to simultaneously fix frequency response errors at multiple listening positions can be found in the 1995 Master's thesis of Bruno Korst-Fagundes. He assumed multiple speakers with a mono source signal and didn't specifically mention subwoofers, but his concept applies equally well to subs. He split the mono signal into separate EQ for each speaker and found that if the number of speakers is equal to the number of listening positions at which their frequency response is measured, it's possible in theory to get perfectly flat response of the combined speaker outputs at multiple listening positions simultaneously. His approach works by solving a set of simultaneous linear equations at each frequency, based on measurements from each speaker to each listening position. The solution to each system of equations at a given frequency yields the required gain and phase of each sub's DSP filter at that frequency. A high-order finite-impulse-response (FIR) filter having the calculated gain and phase response at each frequency is then designed for each speaker. This approach requires special-purpose FIR filter hardware and has some practical problems related to the need for impractically high filter gains at some frequencies. The practical need to limit these gains places a limit on how flat the combined subwoofer responses can be in practice. JBL used a variation of this approach on a product called the BassQ.

Earl Geddes has some proprietary software designed under the assumption that a commonly-available type of DSP device having infinite-impulse-response (IIR) filters will be used. These IIR filters are simple compared to the FIR filters used in products like the BassQ. They emulate the behavior of analog filters. An approach that determines the best possible result with hardware that's commonly available and low in cost, like that used by Dr. Geddes, makes a lot of practical sense. Not much is known about his proprietary software, but his video about multiple subwoofers, along with his PowerPoint presentation, suggest it's doing something similar to what MSO is doing in the "As flat as possible without additional global EQ" mode: trying to get the flattest combined response of subs and main speakers at multiple seating positions. The idea for MSO was inspired by that video.

Harman also has a patented system called Sound Field Management (SFM). Its theory of operation is described in the article "Low-Frequency Optimization Using Multiple Subwoofers". This article was originally published in the Journal of the Audio Engineering Society. SFM works by minimizing a metric called the mean spatial variance (MSV). The goal of SFM is to first minimize the variation with listening position of the combined sub frequency responses (the MSV) without regard to the flatness of the response. A single separate PEQ, gain and delay per subwoofer are adjusted to minimize the MSV. After this step, EQ that's common to all subs is performed to flatten response. Finally, integration with the mains is performed in a third step. MSO does not work in this way.

How is the Frequency Response Error Calculated?

MSO works by minimizing a composite frequency response error. Depending on the optimization method selected, MSO computes the composite frequency response error in two different ways. When the mode called "As flat as possible without additional global EQ" is chosen, MSO bases its composite response error calculations on the response flatness at multiple listening positions, so its reduction of seat-to-seat frequency response variation is an indirect (but significant) result of this approach. When the mode called "Best match of MLP with other listening positions" is chosen, you choose a position for the MLP, and the composite response error is a combination of the response flatness error of the MLP, together with the deviations of the responses of each non-MLP position from the MLP. When a "sub-only" configuration is used, only the composite response error of the subs at multiple listening positions is minimized. For a conventional configuration consisting of both subs and main speakers, the composite error includes both the subs and main speakers. In this case, MSO optimizes the integration of subs and main speakers at multiple listening positions. Regardless of the optimization method chosen, when a configuration includes both main speakers and subs, the optimization of the subs and their integration with the main speakers are all done in one step in order to maximize the usage of the limited EQ resources available in low-cost DSP units.

What Measurements Do I Need to Take?

For each listening position you wish to measure, you need to measure the frequency response of each sub individually at that position. If you are using MSO to integrate the mains and subs, you must also measure the main speaker(s) at each listening position. When using Room EQ Wizard (REW) with an HDMI interface and a USB microphone, you must use the REW acoustic timing reference to obtain time-synchronized measuremnts. The description on the measurements page gives suggestions for measuring both left and right main speakers and subs or just a center speaker and subs. You'll need to keep track of which measurement is which for later reference. When using MSO to optimize both the subs and their integration with the main speakers, HDMI channel 4 must not be used when energizing the subs for the measurements. When using MSO to optimize subs only, using HDMI channel 4 to energize the subs for the measurements is okay.

After you have performed the measurements, you'll need to export each one individually as a .frd file. In REW, this is done using File, Export, measurement as text. Just specify .frd as the file extension and its format will be compatible with MSO. If you have e.g. four subs, and you're integrating them with left and right main speakers, you'll have six measurements per listening position. You'll need to keep track of which speaker or sub was being measured, and what the listening position was via careful choice of file names. It's also reccommended to save explanatory text in the comments section of the exported file. This is done in REW by activating the measurement tab of each measurement, located on the left side of the REW main window, and typing the text into the measurement's text box. These comments will be saved in the exported .frd file, and can still be read even after importing the file into MSO.

For the purposes of this tutorial though, you won't need to do any measurements first. Just download the sample files. They contain all the frd files needed to run the tutorial.